

FINAL REPORT

Acquisition and Processing of LiDAR and Orthophoto in Malcolm Knapp Research Forest (MKRF) Project

Our File: 2611-10042-0

Submitted to:

Faculty of Forestry University of British Columbia Room 2221 | Forest Sciences Centre

TEL: (604) 822-2284 FAX: (604) 822-9106 **Attention:** Jerry Maedel

Submitted by:

McElhanney Consulting Services Ltd. 100-780 Beatty Street Vancouver BC V6B 2M1

Contact: Azadeh Koohzare, Ph.D., P.Eng. akoohzare@McElhanney.com

Table of Contents

1.	Intro	duction	3				
2.	LiDA	R and Orthophoto data Viewers	4				
3.	Missi	on Plan	4				
4.	LiDA	R Acquisition	5				
5.	Fligh	t Plan	6				
6.	Data	Processing	8				
7.	Point	Density	8				
8.	Quali	ty Control	8				
	8.1	Calibration	8				
	8.2	Ground Survey Checks	9				
9.	LiDA	R Data and Classification	9				
10.	Airphoto Acquisition10						
11.	Digital Airphoto Direct Import (DI)10						
12.	Digital Orthophoto						
13.	Deliverables12						

List of Figures

Figure 1 – LiDAR/Airphoto Survey Site	3
Figure 2 - ALS50-II Leica components (Leica LiDAR Manual, 2007)	5
Figure 3 – Rolliemetric RGB (left) and NIR (right) Cameras	5
Figure 4 – LiDAR Flight Lines	6
Figure 5 – LiDAR data tile key map	.10
Figure 6 – RGB-Orthophoto image key maps	.11
Figure 7 – NIR-Orthophoto image key maps	.12

1. Introduction

McElhanney Consulting Services Ltd (MCSL) has performed a LiDAR and Orthophoto survey for Malcolm Knapp Research Forest (MKRF) near Maple Ridge, BC. The coverage area is approximately 60 square kilometres, as shown in Figure 1.

In addition, we acquired Near Infra-Red (NIR) images for the purposes of NIR orthophoto production. The acquisition was completed in May 13th, 2010.

This report describes the acquisition, post-processing and quality control methodology used to produce the final elevation models.

Figure 1 – LiDAR/Airphoto Survey Site

2. LiDAR and Orthophoto data Viewers

All data provided can be viewed using Free-ware viewers. The following are links to free viewers available on Internet:

LIDAR – LAS file

PointVue http://www.geocue.com/utilities/pointvue.html

Orthophoto Images - ECW / TIF-TFW

ERViewer http://www.erdas.com/Products/ERDASProductInformation/tabid/84/currentid/2585/objec tid/2585/default.aspx

LiDAR with Orthophoto Images

MarsExplorer http://www.merrick.com/index.php/services/geospatial-solutions/marssoftware/downloads/freeview-download-form/

Others:

LP 360 http://www.gcoherent.com/

Lasedit http://lasedit.software.informer.com/

QuickTerrain Reader http://appliedimagery.com/download.php

3. Mission Plan

Project: LiDAR and RGB/NIR imageries for MKRF site in BC LiDAR and Photo Acquisition Date: May 13th, 2010. Location: MKRF site, Maple Ridge, BC Total Days: 1 day Total LiDAR Flying Time (hrs): 3 hrs Topography: hills Vegetation: leaf on

4. LiDAR Acquisition

McElhanney utilized the ALS50-II Leica system (Figure 2). ALS50-II 150kHz pulse rate is attainable at up to 570 m AGL for single pulse and 1569 m AGL for multi-pulse.

For Product Specifications of Leica ALS50-II please see http://www.leica-geosystems.com/shared/downloads/inc/downloader.asp?id-9036

The ALS50-II was mounted on Selkirk (Cessna 206) C-GVS Aircraft.

Figure 2 – ALS50-II Leica components (Leica LiDAR Manual, 2007)

We also used Rolleimetric AIC P65+ with RGB lens and Rolleimetric AIC P45 with NIR lens for aerial photography. They were mounted in the same plate as LiDAR system.

Figure 3 - Rolliemetric RGB (left) and NIR (right) Cameras

5. Flight Plan

Figure 3 illustrates the flight lines. The flight planning was designed to acquire average point density of 1 pt/m². A 50% average overlap between flight lines, was chosen to ensure enough LiDAR returns.

Table 1: The Flight Parameters

					Min Swath	Max Swath				
Flight Line #	Length [km]	Alt MSL [ft]	Min Alt AGL [m]	Max Alt AGL [m]	Width [km]	Width [km]	Target Speed [kts]	FOV [deg]	Swath Width [m]	Used Scan Rate [Hz]
46	11.7900	9767.0000	2189.0000	3000.0000	1.1700	1.6100	120.0000	30.0000	1608.0000	32.2000
47	12.8100	9767.0000	2178.0000	3000.0000	1.1700	1.6100	120.0000	30.0000	1608.0000	32.2000
48	13.9300	9767.0000	2178.0000	3000.0000	1.1700	1.6100	120.0000	30.0000	1608.0000	32.2000
49	13.9500	9813.0000	2201.0000	3000.0000	1.1800	1.6100	120.0000	30.0000	1608.0000	32.2000
50	14.6700	9816.0000	2218.0000	3000.0000	1.1900	1.6100	120.0000	30.0000	1608.0000	32.2000
51	14.8800	9872.0000	2235.0000	3000.0000	1.2000	1.6100	120.0000	30.0000	1608.0000	32.2000
52	14.8000	10026.0000	2282.0000	3000.0000	1.2200	1.6100	120.0000	30.0000	1608.0000	32.2000
53	14.7200	10030.0000	2236.0000	3000.0000	1.2000	1.6100	120.0000	30.0000	1608.0000	32.2000
54	8.2200	10653.0000	2083.0000	3000.0000	1.1200	1.6100	120.0000	30.0000	1608.0000	32.2000
55	8.0500	10164.0000	1539.0000	3000.0000	0.8200	1.6100	120.0000	30.0000	1608.0000	32.2000

6. Data Processing

All GPS data was processed using GrafNav software v.8.3. IMU data was processed using Leica IPAS Pro v.1.3 and the laser data was extracted using ALS Post Processor v.2.68. The GPS antenna position in the airplane was calculated by post–processing the raw data at 1 second intervals for the entire flight relative to the coordinates of BC Active Control Station BCSF in NAD83-CSRS.

Table 2: The geodetic coordinates of the Base stations used for LiDAR processing

Base Point	Latitude	Longitude	Ellipsoidal Height (m)
BCSF	49 11 31.49655 N	-122 51 36.24849 W	83.735

The estimated values for the GPS antenna position were used with the laser ranges and platform angles to compute all individual X, Y, and Z coordinates for each laser return in each flight line. The result is a processed point cloud containing all measured points.

7. Point Density

Bare earth point density varies with canopy closure, understory density and topographic features. Mean density of the point cloud was calculated at 3.1 pts/m^2 , and mean density of Bare earth was at 0.5 pts/m².

8. Quality Control

Various steps are taken throughout the project to ensure required data accuracy is met.

8.1 Calibration

The LiDAR system calibration was flown at the British Columbia Institute of Technology (BCIT) site in Burnaby, B.C. The lever arms (offset between GPS antenna IMU and Laser Mirror, were measured as:

Lever Arms GPS Lever arms in (m): x: 0.08 y: 0.178 z: -1.248

IMU Lever arms in (m): x: -0.269 y: 0.207 z: -0.004

There were a total number of 5 flight lines for calibration: 4 basic lines for Attune software analysis and 1 redundant line for better accuracy. The lines were planned as follows:

- 2 orthogonal at low altitude
- 2 orthogonal at higher altitude
- 1 line at higher altitude

The calibration flight parameters used for this project are as follow:

Roll Error: -0.00091715 rad Pitch Error: 0.00822460 rad Heading Error: -0.00461812 rad

8.2 Ground Survey Checks

For this project, there were no survey ground checks. The absolute value of the orthometric height may be therefore, up to 30 cm different from actual ground heights, due to atmospheric and other systematic errors.

The LiDAR data is tied to BCFS, and is checked with existing mapping for portion of the site, where some data was available from 2009 McElhanney orthophotos. (As part of lower mainland project)

The final LiDAR data is in UTM10-NAD83-CSRS, and the orthometric heights are based on Ht2 geoid model.

9. LiDAR Data and Classification

The 3Dimensional laser returns (point cloud) were <u>automatically</u> classified using Microstation (v8), Terrascan. A series of algorithms based on topography were created to separate laser returns that hit the ground from the ones that hit objects above the ground.

Steps taken are:

- Classified LiDAR surface as Bare earth
- Classified other features as non-bare earth or default
- Formatted to ASPRS .LAS V1.0
 - Class 1 Default (non-bare earth)
 - Class 2 Ground points (bare earth)
 - Class 7 Low points (outliers)
- 113 tiles each 1km x1km generated for LiDAR data (Figure 5)
- File Prefix BE Bare Earth only

As per the terms of contract agreement, the data has not been edited.

		001	002	003	004	005	006	007
	008	009	010	Ø11	Ø12	Ø13	Ø14	Ø15
	Ø16	Ø17	Ø18	019	020	Ø21	022	Ø23
	Ø24	Ø25	Ø26	Ø27	Ø28	Ø29	030	Ø31
	Ø32	Ø33	Ø34	Ø35	Ø36	Ø37	Ø38	039
	040	Ø41	Ø42	Ø43	044	Ø45	Ø46	047
	Ø48	Ø49	050	Ø51	Ø52	Ø53	Ø54	Ø55
	Ø56	057	Ø58	059	060	Ø61	062	Ø63
	Ø64	Ø65	Ø66	Ø67	Ø68	Ø69	070	071
	Ø72	073	074	Ø75	Ø76	Ø77	Ø78	079
	080	Ø81	Ø82	Ø83	Ø84	Ø85	Ø86	
	Ø87	Ø88	Ø89	090	Ø91	Ø92	Ø93	
	094	095	Ø96	Ø97	Ø98	099	100	
	101	102	103	104	105	106	107	
•		108	109	110	111	112	113	

Figure 5 – LiDAR data tile key map.

10. Airphoto Acquisition

- Colour Digital Airphotos captured with RolleiMetric AIC P65+ camera, acquired simultaneously with LiDAR capture
- NIR Digital Airphotos captured with RolleiMetric AIC P45+ camera, acquired simultaneously with LiDAR capture

11. Digital Airphoto Direct Import (DI)

- For RGB, the boresight values (omega, phi, kappa) were directly imported in KLT software
- For NIR, AT was created using automatic strip-AT in KLT
- Control for the project derived from LiDARGrammetry (differential rectification processed using bare earth LiDAR data)

Checks with LiDARGrammetry:

- Capture of some Breaklines (Road/Drainage) and some cultural features (Buildings)
- Photogrammetric data is draped over LiDAR surface to match Z values

12. Digital Orthophoto

- KLT software used to rectify (cubic convolution algorithm) and mosaic images
- LiDAR Bare Earth files used for surface generation
- 30cm Pixel size for images
- Accuracy 2 pixels to a 95% confidence level in areas clear of heavy ground cover

Figure 6– RGB-Orthophoto image key maps

Figure 7– NIR-Orthophoto image key maps

13. Deliverables

All LiDAR Data Products, ASCII files and Digital Orthophotos are delivered on hard drive. It includes:

- 1. LiDAR Point clouds in ASCII XYZ and LAS format
- 2. Classified (not edited) LiDAR Bare Earth, in XYZ format.
- 3. Mosaic 30 cm RGB orthophotos TIFF and TFW format
- 4. Mosaic 30 cm NIR orthophotos TIFF and TFW format
- 5. RGB-Raw Ortho rectified frames
- 6. NIR-Raw Ortho rectified frames